Identification of anthrax toxin genes in a Bacillus cereus associated with an illness resembling inhalation anthrax.
نویسندگان
چکیده
Bacillus anthracis is the etiologic agent of anthrax, an acute fatal disease among mammals. It was thought to differ from Bacillus cereus, an opportunistic pathogen and cause of food poisoning, by the presence of plasmids pXO1 and pXO2, which encode the lethal toxin complex and the poly-gamma-d-glutamic acid capsule, respectively. This work describes a non-B. anthracis isolate that possesses the anthrax toxin genes and is capable of causing a severe inhalation anthrax-like illness. Although initial phenotypic and 16S rRNA analysis identified this isolate as B. cereus, the rapid generation and analysis of a high-coverage draft genome sequence revealed the presence of a circular plasmid, named pBCXO1, with 99.6% similarity with the B. anthracis toxin-encoding plasmid, pXO1. Although homologues of the pXO2 encoded capsule genes were not found, a polysaccharide capsule cluster is encoded on a second, previously unidentified plasmid, pBC218. A/J mice challenged with B. cereus G9241 confirmed the virulence of this strain. These findings represent an example of how genomics could rapidly assist public health experts responding not only to clearly identified select agents but also to novel agents with similar pathogenic potentials. In this study, we combined a public health approach with genome analysis to provide insight into the correlation of phenotypic characteristics and their genetic basis.
منابع مشابه
Anthrax Toxin-Expressing Bacillus cereus Isolated from an Anthrax-Like Eschar
Bacillus cereus isolates have been described harboring Bacillus anthracis toxin genes, most notably B. cereus G9241, and capable of causing severe and fatal pneumonias. This report describes the characterization of a B. cereus isolate, BcFL2013, associated with a naturally occurring cutaneous lesion resembling an anthrax eschar. Similar to G9241, BcFL2013 is positive for the B. anthracis pXO1 t...
متن کاملProtein- and DNA-based anthrax toxin vaccines confer protection in guinea pigs against inhalational challenge with Bacillus cereus G9241.
In the past decade, several Bacillus cereus strains have been isolated from otherwise healthy individuals who succumbed to bacterial pneumonia presenting symptoms resembling inhalational anthrax. One strain was indistinguishable from B. cereus G9241, previously cultured from an individual who survived a similar pneumonia-like illness and which was shown to possess a complete set of plasmid-born...
متن کاملRapid, High-Throughput Identification of Anthrax-Causing and Emetic Bacillus cereus Group Genome Assemblies via BTyper, a Computational Tool for Virulence-Based Classification of Bacillus cereus Group Isolates by Using Nucleotide Sequencing Data
The Bacillus cereus group comprises nine species, several of which are pathogenic. Differentiating between isolates that may cause disease and those that do not is a matter of public health and economic importance, but can be particularly challenging due to the high genomic similarity of the group. To this end, we have developed BTyper, a computational tool that employs a combination of (i) vir...
متن کاملDraft Genome Sequence of Bacillus cereus LA2007, a Human-Pathogenic Isolate Harboring Anthrax-Like Plasmids
We present the genome sequence of Bacillus cereus LA2007, a strain isolated in 2007 from a fatal pneumonia case in Louisiana. Sequence-based genome analysis revealed that LA2007 carries a plasmid highly similar to Bacillus anthracis pXO1, including the genes responsible for the production and regulation of anthrax toxin.
متن کاملBacillus cereus G9241 S-layer assembly contributes to the pathogenesis of anthrax-like disease in mice.
Bacillus cereus G9241, the causative agent of anthrax-like disease, harbors virulence plasmids encoding anthrax toxins as well as hyaluronic acid (HA) and B. cereus exopolysaccharide (BPS) capsules. B. cereus G9241 also harbors S-layer genes, including homologs of Bacillus anthracis surface array protein (Sap), extractable antigen 1 (EA1), and the S-layer-associated proteins (BSLs). In B. anthr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 101 22 شماره
صفحات -
تاریخ انتشار 2004